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Abstract: - In this paper, the natural frequency, critical fluid velocity and stability analysis of piezoelectric
biomedical nanosensor (PBMNS) based on cylindrical nanoshell conveying viscous fluid is investigated using
the electro-elastic Gurtin-Murdoch surface/interface theory. This system subjected to nonlinear electrostatic
field and viscoelastic medium including visco-pasternak and damping coefficients. Hamilton’s principle and
the assumed mode method combined with Euler — Lagrange is used for the governing equations and boundary
conditions. It is shown that fluid velocity due to motion of biomarkers has major unpredictable effects on
natural frequency and critical fluid velocity of the system and one should precisely consider their effects.
Key-Words: - Piezoelectric biomedical nanosensor, Natural frequency, Instability, Critical fluid velocity,
Nanoshell, Gurtin—Murdoch surface/interface theory, Electrostatic force, Visco-Pasternak medium.

1 Introduction

Nanotechnology is a multidisciplinary branch of
science which encompasses numerous diverse fields
of science and technology, pharmaceutical,
agricultural, environmental, advanced materials,
chemical science, physics, electronics, information
technology, and specially biomedical fields such as
imaging agents, drug delivery vehicle, diagnostic
tools, etc. to save human life along with other areas
by application of engineering skills in surgical
diagnosis, monitoring, treatment, and therapy etc. In
recent years, the application of nanotechnology
shows further advancement in several specific areas
in biomedical such as drug targeting, bio-
diagnostics, bioimaging, and genetic manipulation
[1]. For example, in head and neck cancer (tumors)
and breast cancer cells, image-guided laser ablation
and photothermal therapy with laser light and
plasmon naturals are the promising minimally
invasive techniques currently being investigated as
an alternative to conventional surgical interventions.
For increase the conformality of therapy delivery,
the use of tumortargeted nanoparticles, especially
metallic nanoshell, which are preferentially targeted
to the tumor and, thereby enhance the safety and
efficacy of the overall procedure, are proposed [2-
5]. For detection of a wide range of biomarkers such
as cancer biomarkers many of materials such as
carbon nanotubes, magnetic nanoparticles, gold
nanoparticles and nanowires and other materials
have been presented and developed [6]. Recently
Gold nanoshells (AuNSs) and nanotube-based
composite  sensors have been intensively
investigated and applied for medical application [7-
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11]. Also, a nanosensor is proposed for detection of
cancer cells located in a particular region of a blood
vessel [12] and for detection of cancer biomarkers in
serum at ultralow concentrations [13]. Recently, a
research project will lead to development of a new
category of nanometer-sized chemical and
biological sensors that are compatible with the
intracellular environment and will enable new
hypotheses to be tested in the role of metabolic
coupling in pancreatic alpha cells and a range of
other cellular systems involved in the regulation of
normal human health [14]. With the development of
material science, the piezoelectric nanosensor and
nano actuator play an important role for medicine
applications and have been fabricated as nano-
beams, nano-plates, nano-membranes and nano-
shells [15-17]. One of the most important scientific
concepts in the design and fabrication of this
nanosensor, and due to the high sensitivity that can
be found in medical applications, is the analysis of
dynamic and vibrations considering of nano-
mechanical theories. Because of the large ratio of
surface area to volume in nano-scaled structure, the
behaviour of surfaces and interfaces lead to a
significant factor in controlling the vibration
analysis of piezoelectric Nano biomedical sensor
based on nano-shell. In this case some non-classical
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continuum theories such as the electro-elastic
Gurtin—Murdoch surface elasticity theory have been
introduced to develop the size-dependent continuum
models [18-19]. In the past two decades,
investigating the surface effects on the mechanical
behavior of nanostructures has become one of the
attractive research areas in nanomechanics, as
evidenced by the large number of publications on
this issue [20-25]. Recently, Zhu and Fang et al.
studied free and forced vibration analysis of nano-
sized single and double shell structures with
piezoelectric layer based on GM surface/interface
theory [20-21]. Ghorbanpour Arani et al. studied on
vibration analysis of double walled visco-carbon
nanotubes under magnetic fields [22]. In another
research by Ghorbanpour Arani et al., nonlinear
vibration of nano sheet with small scale and surface
effects are investigated by using of nonlocal and
surface piezoelasticity theories [23]. Also, vibration
analysis of viscoelastic DWCNT unified with ZnO
layers and subjected to magnetic and electric fields
are studied by Fereidoon et al. [24]. Surface stress
effect on the vibration of nanoscale pipes based on a
size-dependent Timoshenko beam model is
investigated by Ansari et al. [25]. Ye et al
presented a unified solution method for the free
vibration analysis of composite shallow shells with
general elastic boundary conditions [26]. Fazollari
developed an analytical formulation for free
vibration analysis of doubly curved laminated
composite shallow shells by combining the dynamic
stiffness method and a higher order shear
deformation theory [27]. Mirza and Alizadeh
investigated the effects of detached base length on
the natural frequencies and modal shapes of
cylindrical shells [28]. Loy et al. presented the free
vibration analysis of cylindrical shells using an
improved version of the differential quadrature
method [29]. An analytical procedure to study the
free vibration characteristics of thin circular
cylindrical shells was presented by Naeem and
Sharma, in which Ritz polynomial functions are
used for solution of the problem [30]. Zeighampour
et al. investigated wave propagation in viscoelastic
single walled carbon nanotubes by accounting for
the simultaneous effects of the nonlocal constant
and the material length scale parameter and visco-
Pasternak foundations [31].

In the present study, the natural frequency, critical
fluid velocity and stability analysis of piezoelectric
biomedical nanosensor (PBMNS) based on
cylindrical nanoshell conveying viscous fluid is
investigated using the electro-elastic Gurtin—
Murdoch surface/interface theory and considering
von-karman-Donnell's shell model. This system
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subjected to nonlinear electrostatic  field,
viscoelastic medium including visco-pasternak and
damping coefficients. Hamilton’s principle and also
the assumed mode method combined with Euler —
Lagrange is used for the governing equations,
boundary conditions and for changing the partial
differential equations into ordinary differential
equations. Also stability analysis and dimensionless
natural frequency (Q) versus fluid velocity (ur)
dimensionless of a piezoelectric biomedical
nanosensor are accurately studied with respect to the
different geometrical and material parameters.

2 Mathematical formulation

A piezoelectric biomedical nanosensor shown in
Figure 1 based on cylindrical nanoshell embedded
with a visco-Pasternak medium and electrostatic

force with incoming bloodstream as viscous fluid.
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Fig. 1. Piezoelectric biomedical nanosensor

(PBMNS) conveying viscous bloodstream

The length of nano shell is L, the geometrical
parameters of the cylindrical shell are mid-surface
radius R, thickness of cylindrical shell 2hy
thickness of piezoelectric material layer h,. With
the origin of coordinate system located on the
middle surface of nano-shell, the coordinates of a
typical point in the axial, circumferential and radius
directions are described by x, 8, and z, respectively.
Also, K, Ky and C, are stiffness coefficient of
Winkler foundation, shear layer of Pasternak
foundation and the damping factor of the visco
medium for the transverse motion, respectively.
Young modulus, Poisson ratio and the mass density
of cylindrical nano-shell represent Ey,vy and py,
respectively. In the present nano-shell, it is assumed
that the mention material properties vary through
the thickness of nano-shell according to the power-
law function. They are written as

2z + hy\?
Bx = (Br = B) (“—) +Es (1)
N
2z + hy\?
vy = (vr —vp) (—Zh N) Up (2)
N
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2z a
pn = (pr — pp) ( 2-;; hN) PB 3)
N

where q is the power-law exponent. The subscripts
T and B represent the properties of the nano-shell at
the upper and lower layers, respectively.

Young modulus, Poisson ratio, piezoelectric and
dielectric constants and the mass density of
piezoelectric layer are Ep, vy, €31p, €32p,M33p and
pp- Due to the nano-sized property, the ratio of
surface to the volume becomes large, and the
surface energy around the shell expresses significant
effect on the vibration of nano-structure. According
to the electro-elastic surface/interface theory, the
surface/interface region adhered to the neigh boring
solids is several atomic sizes, and has its own
electromechanical properties. The surface at the
outer piezoelectric layer is denoted by s,, and the
inner surface is denoted by s;, as shown in Fig. 1.
The material properties of surface s, are Lamé’s
constants  A%2, %2, residual stress 7,7 and
piezoelectric constants e?fip,egép. Those of the

inner surface are Lamé’s constants A%1, 451, and

. S
residual stress 7!

Due to the character of nano-shell, the state of
generalized plane stress of shells is assumed, and
the normal stress in the radial direction is zero. In
the cylindrical nano-shell, the constitutive relation
can be expressed as [32, 33];

OxxN Ciiv  Cign 0 Exx
Ogon ¢ = |Coin  Coon 0 €96 (,
TxoN 0 0 C66N Vx6

or  {oy} = [Cyl{e},
In the outside piezoelectric shell, the constitutive
relation can be expressed as [17]

4)

Oxxp Cip Cizp 0 J(exy
{09910} =|Cp Cp O {599}
Tx0p 0 0 C66p Vxo
0 0 espp](Exr (5)
_[0 0 e32p] Egp ¢,
0 0 O E

zp
or  {op} = [Cp]le} — [, [{Ep}
In which the subscripts N and P represent the
cylindrical nano-shell and piezoelectric layers,
respectively. {Ep} is the vector of electric field for
piezoelectric layers. [Cy] and [Cp]are the matrixes
of elastic constants, and they can be denoted as

Ey
Ciin = —1 2 = Caony
o (©)
12N 1 _ U]% 21N»“66N 2(1 + UN)
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E
— p___
Cop =777 = Cazp
p
UpEp
Cizp = s = Ca1p, (7
E

Coon = 2(1 + vp)

Since the piezoelectric layers are very thin, E,p,and

Egpare assumed to be zero (Ey, = Egp = 0), and

only the radial component of electric field Ezp is

considered. Consequetly, {Ep} can be written as [34]
E

xp 0
E,p Vo/hy
where 1, is the voltage applied to piezoelectric
layers. In addition, the voltages at the piezoelectric
surface S,(z = hy + hp) and S;(z = hy) are +V},
and —Vj, , respectively. Based on these assumptions

mentioned above, the radial component of electric
displacement D, can be presented as

®)

)

sz = e31p€xx t €32p€99 T+ 7]33pEzp

3 Non- classical Shell theory

Within the framework of classical shell
theory, the displacement fields of the nano-shell can
be written as

U,(x,0,z) = u(x,0) — zw, (10)
ug(x,0,z) = v(x,0) —%W, (11)
u,(x,0,2) =w(x,0), (12)

where u, v and w stand for the middle surface
displacements in the x , 6 and z directions,
respectively. The nonlinear deflection and
curvatures are defined by von-karman-Donnell's
theory as [32, 33]

0
Exx Exx Kxx
9ot =14&39 ¢ + z{Kao
0 K
Vx6 Y0 x6

( ou 170w\
a*z(%)
= (2 L (S
R\06 2R2\00
10u Jdv 1owadw

R0 Tax TRax 90

(13)

~~
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(0w

0x?

1 0%w
R? 062

2 0%w
R 0x06
in which &2, «cgy and y2y are the middle surface
strains, and Ky, ,kgg and k,g are the curvature
components of the nano-shell.
Since the dimension of the shell is at nanometer
scale, the surface effect needs to be considered. On
based of the Gurtin-Murdoch surface elasticity
theory, the constitute relations for surfaces can be
written as [18-20]

—Z

Uci;? = 702506;6’ + (0" + 2°2)eqq80ap (14)
+2(u52 - T, )sa/;

S S S
+T0 a/} ZEZP' az = TO uz,za' O-a; =

0 Uz (0 B = x,6)
aﬁ = 70150:[3 + (7o' +2° 1)5qq ap
+2(/151 -1, )saﬁ+‘[0 aﬂ'
in which &,p is the Kronecker delta function.

Furthermore, the components of stress at the
surfaces can be expressed as

Sz = (%2 + 2u52) &y, + (ng
2

—) +‘L’0 - e31pEZp,
05 = (g7 + 252 ) &gy + (152 + 2152) g

s, (W 1 sow

5t (x + o (55) )+~ eShoEw
1 = (A% + 2U51) &y + (101 + 151)833
73

ow
_L _ 51
2 (6x) t

g6 = (10" + Asl)gxx + (A5 + 2u"1)egg

s (W 1 /owy? st
(7 +5m(5g) )+

+25%)egy (19

6v+ 1 ow ow
Si _ s 0x 2R 0x 06
Oxg = H'Vx0 — Ty 7 92w )
"~ R0x06
Si Si aW
O'xz = ‘L'O a—,
16u+ 1 owow
Si _ s sil RO 2R dx 06
Ogx = H'Vx0 — T 7 92w ’
" R9xd0
L 1,2
%: =R g5 (1 =12

Based on the classical continuum models, g,, is
neglected due to its small value as compared to
other normal stress components. But, in the present
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nonclassical continuum model, this assumption does
not satisfy the surface conditions. Thus, it is
supposed that o,, varies linearly through the
thickness and satisfies the balance conditions on the
surfaces [35, 36], i.e

00 195 92w 16)
Xz += 70z ,D (
dx R 00 a2

Aoyl N 1d0,! 5 O%w
\ ox "R a0 P o
90,2 L1 day: s 02w
, 1 dx 'R 06 at?
2hy + hy (aa;; 1da,, 5152W>

O-Z Z

1
2

+
ax "Roao P o2
For simplification, the material properties of
surfaces and interfaces are selected as
Tt =1 =13, A= 2% = 25,
psL =t = s, esr ) = esyy, (17)
S2. _ .S
€32p = €32p
By means of Egs. (15) and (16), o __can be

rewritten as

A

(o
zZ(t?+ 1 1 9%w
+(0—0 \_'___ (18)
2hy + hy) R2 962
N (p*r —p2)  z(p*r + p2)\ 0°w
2 2hy +hy, ) 0t2’

According to Eq. (18), the normal stresses ¢~ and

0,y Eas. (4) and (5) can be rewrite ten as

UNO-ZZ(N,p)
Oxxn = Crin€xx T CianEop + v, (192)
UNUZZ(N,p)
Ogon = CoinExx + CoonEpo + EETET (19b)
N
0xon = CeonYx6> (19¢)
Oxxp = Cllp‘sxx + ClZpEHB - e31pExp
4 pOzz(Np) (19d)
1-v, )
Ogop = Co1p€xx + Ca2p€ge — €32pE0p
UNOzz(N,p) (19¢)
1-vy,
O-XQP = C66pyx9a (19f)

4 Governing equations

In this section, the governing equations of
motion of the piezoelectric cylindrical nanoshell are
obtained by applying the assumed mode method.
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The total strain and kinetic energies considering the
surface stress effect are expressed as:

1 (L 27 hw
:_ff f (GiiNsij)Rdzdedx

2T hN+hp O:iinEi
j f f ”” v )Rdzdedx
Dzp
m TEi R+h
f ) ( . )( WL
E D 2 + p (20)
21:
f f a Su (R—hy)dOdx
N xgxx + N99899
L 21
— lf f 4 +Nx9V9(c)6 + Mo Koex RdOdx .
2Jo Jo | +Megkge + Mygkye
+7733Ezzphp }
( ou\> o2\ )
1 (E) +(a)
T = —ff I ) RdOdx 2D
2 N (8W>
N\ &) ))
where
hy hN+hp
I = dez+f pp Az + p°®

= 2pyhy + pphy + p52|Z:_hN
+0%  z=ny+h,

Which py,p, and p*
nanoshell,
respectively.
In Eq. (20), the stresses and moment resultants are
defined in appendix A.

The work done by the surrounded viscoelastic
medium including the visco-Pasternak medium and
viscous damping and the electrostatic force can be
written as [37-39]

Wom

are the mass density of

piezoelectric layer and surfaces,

K,w
21T 2
K V
ff w r RdOdx (23)
Cw ot
w,
Y (Vp¢ + Vyc cos(wt))? wRdBdx Y

[Jeh)
[cosh (1+225)]

For electrostatic force,b, R and Y = 8.85 X
1072C2N"1m™2, respectively, are electrode
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distance to nanoshell, nanoshell radius and the air
permittivity [39].

The equation for the fluid (in this paper,
bloodstream) motion may be described by the well-
known Navier—Stokes equation as [40]

vV
—=-VP + HVZV + Fbody'

Pr Dt (25)

where V = (v, v,, ;) is the flow velocity vector in
cylindrical coordinate system with components in
7,0, and r directions. This vector can be expressed
as follows

Ju
— + ug cos(6),

= 5t (26a)
ov
=— 26b
Vg 5) o (26b)
W .
il sin(@), (26¢)
Where 8 = — 2% and u; is the constant velocity of
dx f

the fluid (blood). Also P, i, and py are the pressure,
the effective fluid viscosity, and the mass density of
the fluid, respectively, and Fj,q, represents the
body forces. Furthermore,V and V? are gradient

. . D .
and Laplasian operators, respectively and o 18

perfect derivative which can be defined as below:
D 0 0 0 0

E:E+Uxa+v9%+vzg, (27)

Substituting Eqgs. (26) and (27) into (25) we obtain
the pressure of fluid as:

dP, 62W+2 62W+ 0%w
= Pr\GE t g T W o
3w 23w
28
6x26t+R26926t (28)
i Bw 83
Ty <E)x3 * R26926x>

With multiple both side of above equation at the
cross-sectional area of the internal fluid (45 ), radial
force is expressed as:

oP
22w

+ 2ur axat\\

, 02w

82
a2
_ —PfAf \6t
+uf _6x2
23w 23w

( %20t | R?06%0¢
+urAy 93w
\+uf <6x3 +

Friuia

(29)

63
R26626x>
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Considering the slip boundary condition in the
analysis for exact investigation of the behaviour of
the nanoflow, the average velocity correction factor
VCF is introduced to establish the relation between
slip average velocity Vg, and no-slip average
velocity Voo _giip, 1.€.;

Ur = Vsiip = VCF X Vio_siip,

(30)
where VCF coefficient can be written as [40]:
1
VCF = (1 + ak,) +4(2 _Jv)( kn ) , (3D
oy 1+k,

where the slip of flow from inner nanotube through
Knudsen number (k,) is considered and for

practical purposes, the tangential momentum
accommodation  coefficient o, =0.7.  Other
parameters are:

2a
a =—[tan™"(a;kP)],

64 (32)

Qg =——F—v

3m(1- b_1)

Where a; =4 and B =0.4. And also for slip
boundary condition, the value of parameter b, is set
to be b; = —1. Hence, the external work of the
fluid can be expressed as:

21
Wf = f J. FﬂuidWRdex
0 Yo
( 0%w
—+
at?
) ( VCF X ) y
Vno—slip
62w7+
dx0t
<VCF X )2 y
Vno—slip
0*w
0x? wRdfdxRd
23w N
dx20t
23w N
R2%2062%0t
(VCF X ) 9
Vno—slip
23w
0x3
03w
R20x002
The equations of motion and corresponding

boundary conditions of the piezoelectric shell can be
derived from Hamilton’s principle

—PrAr

(33

L r2m
-1
0 J0

(34)
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There are two ways to obtain the equations of
motion for a mechanical system: Hamilton's
principle and Euler-Lagrange equation. Hamilton's
principle is the main procedure to obtain the
equations of motion and boundary conditions. The
equations of motion and corresponding boundary
conditions of the piezoelectric nano shell can be
derived from Hamilton’s principle and by taking the
variations of displacements u,v and w and

integrating by parts, and by equating the coefficients
of du, v and dw to zero, the governing equations
of motion are derived as:

sy MNax | 10Ny _ 0%u
Y Tox TR ae T (35
Bng 1 6N99 6217
. _ N i 36
ov: ax R 96 ot (36)
W ax2 R0x06 R’ 002 R
4N 62W BNxx aW Ngga w 1 0N99 aW
**5x2 ' 9x dx R? 802 ' RZ 960 06
2 62 1 ang aW 1 ang aW
SNyg=——>
R"axae R dx 00 R 960 ox
—IaZW+C W+K K,V*w
~ o2 ot v
[ 0w
dt?
62w
—PrAs | +2(VCF X Vio—siip) =——— (37
0x 6t
20w
— (VCF X Vno sllp)
23w N 03w N
/axzat R2002%0t \
+uAs (VCF X Vio—siip) X
(63W+ 03 )
0x3  R200%0x
Y (Vpe + Vyc cos(wt))?
_ b—w 2
\/(b—w)x(2R+b—w)[cosh 1(1+T)]
and boundary conditions are obtained as follows:
1
ou=0 or Nyyn, + EngTlg =0, (38a)
1
Sv=0 or  Ngn,+ ENggng =0, (38b)
oM,, 10M,g
_ Ox R 00
ow=0 or " 6W+Nx96w Ny
XX 5
10M,q 1 0Mgg
R 9x R? 96 _
+ Nx9 dw Ngg aw o = 0,
R 0x RZ% 06
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w_, M..n. +~Mgnp =0

ox - 07 MM TR Mxee =5 (38d)
ow 1

%zo or = Mxeny + 57 Magng =0, (38e)

But Euler—Lagrange method is an easier way to
obtain the equations of motion. The resulting
equations can be solved by the assumed mode
method. In the assumed modes method, the
admissible functions must satisfy the geometric
boundary conditions and there is no need to satisfy
the natural boundary conditions. Hence, solving the
equations with this method reduces significantly the
complexity of the problem. Therefore, in this work,
the assumed mode method is used to obtain the
equations of motion using Euler—Lagrange method.
Following dimensionless parameters are used:

. u v W _x__b
u——N,AU—E,W—E, Z,b—hN,
_ N = Bijn
Aujn = Ay B = Apivhy'
Dl]N = DijN JAijp = Aijp,
Ayinhy A1y
=i g Bup _
Y A111¥ P Ajivhy
2 _ B D;jp
Y Ay Aynhy
 * lek]' F* _ Fl*lN
U Anwhy Y Avwhy
— Fiyp . Efin
Fiap Ajinhy’ Faw = Ayiyhy
. 11p = Jiin
Ej1p Anhe Jin ok
. Jip = Giin (39)
Ji1p Wi 11N ok
o G o Nl
e PNh13;1’ 8 Ayn’
T Ng,"pVO _ My, Vo
o Al%N T Aynhy
11NN 11N
L _hy 1 hy
W Ry
I h,
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_ C,, QL? Py
C = ) 0 = )
v mzAin Pr mspPy
_ 2pyhy
tr = (VCF X Vyoosiip) Ao
_ K 2hy Ve
—)V _l
Hr = ms | pyA1inL? be ™ Vo
o Vac oV o mmiVgY
Vie=F V=g Fe=—"—F—
Vo Vo mzAiin

Respectively, dimensionless strain and kinetic
energies are obtained as follows:

1 (L2 ou\ 2 ou\2
=5f0 f {“1((3—;) T (%)

U v 070U _ 0T
+as3 a_f%-}_ a4§% + CZ5W¥

U (0w 2 U (0w 2
+“6§<a_§> +“7§(£)

ot 0w ow T\ A7 (>
*“%Eﬁ 9(%) +“10@(%)
v <aw 07

+a11% a_§> + 0(12W EY:

a7\’ o7 0w oW _2
+aq3 (—) +aq, a—fa—gﬁ + a 5w

v (36) (G ) e (5)

ou 0%w ouo’w

+“2°W(ae) T2 509500 T “2 5z gz 0

ou 0%w 0v 0°w
s gg ag T a0 o7

ov 0%°w 0v 0°w
+azsa—fa€%+a26%m

92w 0w\ 2 _ %
+a27a—€2(%> +O.’28Wa—f2

92w 10w\ > 92w /0w >
+“29W(a—g) +“3°a_§2(a_f)

02w 0w\ > 92w ow ow
+“31W(%> T %32 55560 92 90

0w %W\’ %W\’
+a’33W 692 + a34 <a_€2> + a35 <W>

92w\ 02w 32w
T30\ 5200 ) + %7 522 907

ou ov ow
+a39¥ T Q050 T A (E)

+ azgw

2
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AW\ 92w 92w
tay; (%) t ays3 Er t ayy 202
0%w 0w 0%w 0°w
+ays a—fzwﬁ' 0(4_6WW
ou 92w ov 0%w _
+a,; O_EF + Qug 90 972 + QoW
w2 92w w2 92w
aso (a—;) 30z T %51 (ﬁ) 9
+133E2,h, }RAOdx,

0°w
dt2

(41)

jfz” alrl +(af)\

) RdOdx

where coefficients of a; (k = 1..51) are introduced
in Appendix B.
Also, dimensionless work done by viscoelastic
medium, potential due to external electric voltage,
visco-pasternak  effect and harmonic force,
respectively, obtained as follows:

6

Wom = _
K,

- GW

+C, (—

\ a

(42a)

S|

9% - dOdE

L r2m
0 Y0

v
N—

( _0%w )
Py 912
__ 0%w
- +2pfufﬁ
62_
+pfuf afz
_ 0w
MEFTFE
63
Mt 3670,
93w
MEEAFTS)
3w
My 5 eage 9062 )

W dOdE (42b)

(42c)
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2
Vi
DC w
<+VAC cos(wr))

L r2m
A
0 J0

rdodé

Using electrostatic force in according to Eq. (42c¢),
complicate solution of the obtained equation of
motion. Hence it is necessary to express it to the
polynomial form. For this purpose, Taylor
expansion or curve fitting methods can be used. For
curve fitting method, the nonlinear electrostatic
force is approximated with polynomial with desired
order. This is a standard problem in optimization
theory and can be implemented in different
mathematical software such as Matlab, Maple and
Mathematica. For example Isqcurvefit function in
Matlab which solve nonlinear curve-fitting (data-
fitting) problems in least-squares sense can be used
here. Hence with expressing the electrostatic force
as a polynomial form, the dimensionless work done
by electrostatic force can be express as follows:

W, =

2
= Vpc + %
o | S \Vac cos(wr) @3)
] f RdOdx
+C2W + C3W w
+o ot G

which C; — C,, are constant.

5 Solution procedure

In this section, first, discretizing equations of
motion is expressed by applying the assumed mode
method and then the complexification-averaging
method is applied for studying of the steady state
response of the system.

5.1 Discretizing equations of motion

In this section, by applying the assumed
mode method, the in-plane, transverse and shear
deformations can be expressed as general
coordinates and mode shape functions that satisfy
the geometric boundary conditions, as follows [33]:
u(x,6,t)
v(x,0,t)| =
w(x,0,t)

(44)
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[ Up,j,c(T) cos(jB) | ij(f)‘

Uy, s (T) sin(j0) |
Vpn,j,c(T) sin(j@) |
+Vpm,j,s () cos(jO) |
Wi, (1) 05(j6) |
[ |+ Wi, j,s(T) sin(j6) |
Um,o (T)Xmo (f)
+ z Um,0 (T)d)mo (f) =
m=1|Wpn,0(7)Bmo(§)
Mzt MON Ty () 3 (§)9;,(6)
v (D) ¢r(ar ()],
(ir=1 |ws(1)Bs(E)1s(6)
where x;(¢), ¢,-(§) and (&) are modal functions
which satisfy the required geometric boundary
conditions. u;(t), v,(t) and ws(t) are unknown
functions of time and are related to dynamical
response.
Substituting Eqs. (44) into Egs. (40)- (43) and
applying the Lagrange equtions:

6<6T> (E?T)_I_(an)
0t \0g; aq; 0q;

NEONCEPRE
37.)" qg=umvw)
Where W = Wy, + Wr + W,.
Results in the following reduced-order model of the
system:
[(M)i1{a3 + (M) 1w} + [(K) )
+HELIP} + [FOY T} + [(NL)Y 1{w?}
= [Pyl ..
[(M)p]{v} + (MY T{iw} + [(K)y{u}
+HEOPHT} + [y Hw} + [(NL)y {w?}
= [Rp), )
[ + KW W3] (W} + [(wlw)
+H (Kl + [FOW P} + [KOW{w}
+H(NL)wH{wu} + [(NL)y [{wv}
+[(1_VL)%Z]{3T/2} + [(NL)ws]{w?}
= [Fwe] + [pr]

[ ( < (Vyccosr)? )x \]

_ +2V,cVpccost

+|F,< _ ,

[ <C4(NL3e)“w’ + Cg(NLZe)w> ‘

+Co (KW + CiFy

where (M), (C) and (K) are mass, damping and
linear stiffness matrixes. (NL)Y¥,(NL)Y, and
(NL)y,are  second-order nonlinear  stiffness
matrixes and (NL)j; is third-order nonlinear
stiffness matrix. Also, K,, NL,, and NL, are the
linear stiffness, second and third order nonlinear
stiffness matrixes for electrostatic force expansion,
respectively. Also, F,, F,, and F,, are applied
loads by piezoelectric voltage and surface stress. All

¢m j (E)

.ij(f)_

M;

(45)

(46)

(47)

(48)
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coefficients of mass, stiffness, linear and nonlinear
term matrixes and applied loads Eqgs. (46) - (48) are
presented in Appendix C.

Natural frequencies and mode shapes can be

obtained from solving following eigenvalue
equation:

{umn Umn Wmn}T =0,

6 Results and Discussions

In this section, first, comparing the present
numerical results of macroscopic cylindrical shell
with previously published in the literature is
presented for arbitrary boundary conditions and
convergence study of a Piezoelectric biomedical
nanosensor (PBMNS) based on nano-shell with
simply supported boundary condition is investigated
for Gurtin—Murdoch surface/interface theory. Then
estimation of the natural frequency, critical fluid
velocity and stability analysis of piezoelectric
biomedical  nanosensor  conveying  viscous
bloodstream is investigated using the electro-elastic
Gurtin—-Murdoch  surface/interface theory and
considering von-karman-Donnell's shell model. In
order to simplify the presentation, CC, SS, CS and
CF represent clamped edges, simply supported
edges, clamped-simply supported edges and
clamped-free edges, respectively and also for
simplification of surface effect is represented SE.
The material properties for nonhomogeneous nano-
shell and piezoelectric layer are shown in Table 1-2,
respectively [42].

Table 1. Properties of stainless steel and nickel [42]

Stainless steel Nichel
Ep(GPa] vp | ps(kgm™ Er(GPa) vy | pr(kgm™
208 0.381| 8166 205 0.31 8900

Table 2. Properties of PZT-4 [42]

E,(GP{ vy | e31p(C/1 e355,(C/7 773317(10_11[' pp(kg m

95 0.3] —5.2 —5.2 560 7500

The material and geometrical parameters used in all
following results are shown in Table 3.

Table 3. The material and geometrical parameters

[20, 37, 43-44]
R(m) | L/R hy/R | h,/R | 251(N/1| uSr(N/
1x107 10 002 | 0.02 | 4488 | 2.774
ot | pilkg/| (V) | AS2(N/m u>(N/1 ©52(N /4
(N/m)
06 |317x1 1x10°] 4488 | 2774 | 0.6
es2,(C| ez, (C/ p*2(kg/| Cw(N.S) Ky(N/{ Kp(N/1
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—3x1( -3 x10 5.61x1 1 8.9995( 2.07127
x 107t | x 10V
Vac(V) | Vpc (V) b/R Vo uf(pa.s pf(kg/
3 1 2 1 3x 107 1060

Of course, the geometrical parameters can be
varying according to the type of problem. In this
paper, the results are presented in dimensionless
form and thus the results are not limited to a
particular type of matter. The data presented in the
form of sample data to approximate the numbers
used in the actual range.

6.1 Convergence and comparison studies

The method proposed in this paper is validated by
comparing the present numerical results with
previously published in the literature. If we neglect
the piezoelectric, visco-Pasternak and surface
effects, the present model can be reduced to the
macroscopic  cylindrical ~ shell model. The

frequencies (wn

QR (1 —v?)p/E ) of present work are compared

dimensionless natural

with macroscopic cylindrical shell which previously
given by Loy et al. [29] that is shown in Table 4 for
the three classical boundary conditions. The
parameters used in this example are: m = 1, L/R =
20, hy/R = 0.01, and v = 0.3. It can be observed
from Table 5 that the present results agree very well
with the reference solutions, which indicates that the
method presented in this paper is suitable and of
high accuracy for free vibration analysis of
cylindrical ~ shells with classical boundary
conditions. The slight differences in the results may
be attributed to the different shell theories and
solution approaches adopted in the literature and in
this paper.

Table 4. Comparison of dimensionless natural
frequencies (a)n = QR (1 - vz)p/E) for SS, SC
and CC boundary conditions for a homogeneous
cylindrical shells withm = 1, L/R = 20, hy/R =
0.01, and v = 0.3.

n SS CS CC
Presen | Loy Presen | Loy Presen | Loy
t [29] t [29] t [29]
1]0.016 |0.016 | 0.023 | 0.023 | 0.032 | 0.032
101 101 299 974 074 885
2 10.009 | 0.009 |0.010 |0.011 | 0.013 |0.013
235 382 963 225 202 932
310.021 |0.022 | 0.020 |0.022 | 0.019 | 0.022
753 105 953 310 713 672
410.039 | 0.042 | 0.041 | 0.042 | 0.041 | 0.042
307 095 300 139 386 208
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Complete convergence for the dimensionless natural
frequencies £, and dimensionless damping
frequencies Qg of SS piezoelectric biomedical
nanosensor considering with the Gurtin—-Murdoch
surface/interface theory and the material and
geometrical parameters of Tables (1-3) is shown in
Tables 5 and 6, respectively.

Table 5. Convergence of dimensionless natural
frequencies (1, of the SS piezo piezoelectric elastic
biomedical nanosensor

n|N=1 N=2 N=3 N=5

2| 0.8107340 | 0.8107351 | 0.8107351 | 0.8107351
4357 0782 0781 6796

3| 1.8151243 | 1.8151572 | 1.8151571 | 1.8151580
0896 0073 8273 8628

4| 2.8327282 | 2.8328471 | 2.8328467 | 2.8328504
9570 2539 7062 1730

Table 6. Convergence of dimensionless damp
frequencies Q, of the SS piezoelectric biomedical

nanosensor

n|N=1 N=2 N=3 N=5

2| 0.8062114 | 0.8062124 | 0.8062124 | 0.8062124
8043 2314 2313 7871

3| 1.8029349 | 1.8029658 | 1.8029658 | 1.8029666
1873 5533 4049 9801

4| 2.8103357 | 2.8104503 | 2.8104500 | 2.8104535
1036 3736 1216 3764

It is observed that the number of polynomial
terms, N, is increased, the value of the frequency
parameter (Q,,8Q,;), converges rapidly. With
considering of the two succesasing values of N, it is
shows that as N increases, the percentage difference
between the successive frequency approximations
decreases. Thus the error as shown above is less 1
per cent, which is well within the limits of
engineering tolerance. The minimum frequency in
this case is associated with the circumferential wave
number n = 2. This assertion is valid for the entire
range of shell.

6.2 Parametric study
The convergence and comparison study of the

present work was verified in the previous
subsection. In this subsection, dimensionless
frequencies ()  versus dimensionless  fluid

(bloodstream) velocity s for stability analysis and
estimation of critical fluid velocity of a SS
piezoelectric biomedical nanosensor (PBMNS) are
presented in Figures 2-10 with respect to the
different geometrical and material parameters such
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as the ratio of the length of the nanosystem to the
radius L/R, the ratio of nanoshell thickness to
radius hy /R, the ratio of the piezoelectric thickness
to the radius h, /R, the effects of the viscoelastic
medium ( K,,, K,, Cy), the piezoelectric voltage V;,
and also surface energy effects. As shown in these
figures, the frequency is decreased as the flow
velocity is increased.

Figure 2 demonstrate in the dimensionless
frequency (Q) versus fluid velocity (y) for the first
five vibration modes of the PBMNS. It can be seen
that Q,, reduces with increased Uys. For zero natural
frequency, PBMNS becomes unstable and the
corresponding fluid velocity is called the critical
flow velocity. As can be seen, the critical fluid
velocity correspond to the 15t and 29 modes is
reached at the vicinity of Uy = 6.894 This
physically implies that the DWBNNT losses its
stability due to the divergence via a pitchfork
bifurcation while the 3™, 4™ and 5™ modes are
still stable. Thereafter, for the fluid velocity within
the range 6.894 < Uy < 7.23, the first amd second
modes are zero, which the system becomes unstable.
As the flow velocity reaches about @y = 7.23
natural frequencies in the 15' mode return to
positive and the system tends to regains stability in
the first mode, while, the 2" mode still remain
instable. Also, the PBMNS becomes unstable at 374
mode when @y = 7.248. This phenomenon may be
observed in different modes for higher velocities in
this figure. The same behavior can also be observed

for other vibration modes of following figures.
3.5 . ! 5 ; . . ;

1* mode
.................................................. Ermet 2" mode | ]
3" mode

= 4" mode

2.5

"15

[ Y] ——

Fig. 2. Dimensionless frequencies Q versus fluid
velocity uy for the first five vibration modes of SS
piezoelectric biomedical nanosensor

The effect of length-to-small radius ratio (L/R) on
dimensionless natural ,, versus dimensionless fluid
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velocity uy for SS piezoelectric biomedical
nanosensor is illustrated in Figure 3. It is evident
that natural frequencies and critical fluid velocity of
the PBMNS increase with increasing L/R. As can
be seen, the critical fluid velocity corresponds to the
lower value of L/R = 5 sooner than the rest values
of this ratio are reached to be zero. This physically
implies that first the PBMNS in L/R = 5 losses its
stability due to the divergence via a pitchfork
bifurcation. In addition, the length-to-small radius
ratio of cylindrical shell has an important effect on
natural frequency. The reason is that a higher L/R
ratio leads to increase in the nanoshell stiffness, and

cause to higher natural frequencies of nanoshells.
1.5 T T T T

0 2 4 é 8 10
u_f
Fig. 3. The dimensionless frequencies Q versus fluid
velocity Uy of SS piezoelectric biomedical

nanosensor for different values of L/R ratio

Figure 4 illustrates the effect of thickness shell to
small radius ratio hy /R on dimensionless natural

frequencies (), versus dimensionless fluid velocity
uy for SS piezoelectric biomedical nanosensor.
T

(1] T
0.7
0.6
0.5 i
——h,/R=0.005
0.4 - A b NN NS
h,/R=0.01
—h,/R=0.015
03F- N R A N
——h,/R=0.02
02k —hy/R=0025 4 AN NN ]
——h,/R=0.05
1 T TS ST T T B TR PR
0 | | | |
0 2 4 6 8 10

262

lff
Fig. 4. The dimensionless frequencies Q versus fluid
velocity @y of SS piezoelectric biomedical
nanosensor for different values of hy /R ratio
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It can be seen that with the increasing of the
nanoshell stiffness ratio (hy/R), the natural
frequency Q and the critical fluid velocity Us
decrease. Also, the critical fluid velocity
corresponds to the higher value of hy/R = 0.05
sooner than the rest values of this ratio are reached
to be zero. This physically implies that first the
PBMNS in hy/R = 0.05 losses its stability due to
the divergence via a pitchfork bifurcation.

The effect of piezoelectric thickness to small radius
ratio (h,/R) on dimensionless natural frequencies
Q, versus dimensionless fluid velocity Up s
presented in Figure 5. It can be seen that unlike
previous results for hy /R ratio, in this case with the
increasing of the piezoelectric thickness to small
radius ratio, the natural frequency Q and the critical
fluid velocity %y increase. Also, the critical fluid
velocity corresponds to the lower value of h,,/R =
0.005 sooner than the rest values of this ratio are
reached to be zero. This physically implies that first
the PBMNS in h,/R = 0.005 losses its stability

due to the divergence via a pitchfork bifurcation.

L] o T T B
1] S —
L e
O ——h_/R=0.005
: h /R=0.02
o= 7Y AR ——h /R=0.03
; —h_/R=0.06
| —h,/R=0.1
110 S O SO SO AU SRS S
0 i 1 1
0 1 2 3

Fig. 5. The dimensionless frequencies Q versus fluid
velocity @y of SS piezoelectric biomedical
nanosensor for different values of hy, /R ratio

Figures 6 and 7 respectively illustrate dimensionless
stiffness coefficient of Winkler foundation K, and
shear layer of Pasternak foundation I?p on
dimensionless natural frequencies (., versus
dimensionless fluid velocity u; for SS piezoelectric
biomedical nanosensor. In both case, it can be seen
that with the increasing of K,, and K, ratios, the
natural frequency Q and the critical fluid velocity Ug
increase.
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0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

Fig. 6. The dimensionless frequencies Q versus fluid
velocity Uy of SS piezoelectric biomedical
nanosensor for different values of K,

This is perhaps because increasing Winkler and
Pasternak coefficients increases the shell stiffness.
For zero natural frequency, PBMNS becomes
unstable and this physically implies that the
PBMNS losses its stability due to the divergence via
a pitchfork bifurcation.

u_f
Fig. 7. The dimensionless frequencies Q versus fluid
velocity Uy of SS piezoelectric biomedical
nanosensor for different values of I?p

Figure 8 presents the effect of dimensionless
damping coefficient C,, on dimensionless damp
frequencies Q; versus dimensionless fluid velocity
uy for SS piezoelectric biomedical nanosensor. It
can be seen that with the increasing of damper
coefficient, the natural frequency Q and the critical
fluid velocity @y decrease. Also, the critical fluid
velocity corresponds to the higher value of C,,
sooner than the rest values of this ratio are reached
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to be zero and system losses its stability due to the
divergence via a pitchfork bifurcation.

lfj‘
Fig. 8. The dimensionless frequencies Q versus fluid
velocity @y of SS piezoelectric biomedical
nanosensor for different values of C,,

Figure 9 presents the effect of several of
surrounding medium on dimensionless natural
frequencies (0, with respect to the dimensionless
fluid velocity . As can be seen, without medium,
Winkler ( K,,), Pasternak (I?p), visco ( C,), visco-
Winkler (K,, + C,), visco- Pasternak (K, + C,),
Winkler-Pasternak (K, + K,) and Visco-medium
(K, + I?p + C,), are eight assumptions medium in
this work. It can be founded, that the frequency and
the critical velocity have minimum and maximum
values when the system respectively has with and
without damping coefficient. In this results indicate
that the system tends to be very sensitive to whether
or not there is a damping coefficient in all cases.
Also, it is worth mentioning that critical velocity in
Pasternak foundation is more than critical velocity
predicted by Winkler foundation. This is due to the
fact that the Winkler foundation describes the effect
of the normal stress of the elastic medium, whereas
Pasternak elastic foundation describes the effect of
the tangential and normal stresses of the elastic
medium.
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(].9".“.".!‘H.!H..“H‘!.H.!H..

=== With all medium
C,=0

— K,

K,=0

Fig. 9. The dimensionless frequencies Q versus fluid
velocity @y of SS piezoelectric biomedical
nanosensor for different cases of Visco-medium
The effect of piezoelectric voltage V, on
dimensionless natural frequencies (, versus
dimensionless fluid velocity iy for SS piezoelectric

biomedical nanosensor is illustrated in Figure 10.
16

1.4

1.2

IC0.8

0.6

04

0.2

0 s
0 2 4 6 8

u, f

10

Fig. 10. The dimensionless frequencies Q versus
fluid velocity %y of SS piezoelectric biomedical

nanosensor for different values of 171,

As shown in this Figure, with the increasing of I7p,
the natural frequency Q and the critical fluid
velocity Uy increase. This is perhaps because
increasing piezoelectric voltage increases the
nanoshell stiffness. For zero natural frequency,
PBMNS becomes unstable and this physically
implies that the PBMNS losses its stability due to
the divergence via a pitchfork bifurcation.

And in end, dimensionless natural frequencies (0,
versus dimensionless fluid velocity #y for SS
piezoelectric biomedical nanosensor with and
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without surface energy effects are shown in Figures
11. As show in results, the most important
parameters on natural frequencies and fluid velocity
is surface density (py;, pps ) that with regardless of
this parameter, the critical fluid velocity sooner than
the rest parameters are reached to be zero and
system losses its stability due to the divergence via a
pitchfork bifurcation but in this case system has
maximum natural frequency due to higher stiffness
of nanoshell in this case. Also when all surface
effect is considered, the critical fluid velocity later

than the rest parameters are reached to be zero.
2,5,—r‘111|rr T T —TT

= With all serface effects

2 _ 2 1

eSlp eSZp L S T

— 152:151:0 1

— 1152=.us‘=°

Sz =.51=0
o To

0

p51 :p'sl:

Fig. 11. Surface energy effects on the dimensionless
frequencies ( versus fluid velocity @y of SS
piezoelectric biomedical nanosensor

7 Conclusion
In current study, the natural frequency,

critical fluid velocity and stability analysis of
piezoelectric biomedical nanosensor (PBMNS)
based on cylindrical nanoshell conveying viscous
fluid is investigated using the electro-elastic Gurtin—
Murdoch  surface/interface theory, Hamilton’s
principle and also the assumed mode method
combined with Euler — Lagrange. This system
subjected to nonlinear electrostatic  field,
viscoelastic medium including visco-pasternak and
damping coefficients. The convergence, accuracy
and reliability of the current formulation are
validated by comparisons with existing results. Also
stability analysis and dimensionless natural
frequency versus dimensionless fluid velocity of a
piezoelectric biomedical nanosensor are accurately
studied with respect to the different geometrical and
material parameters.
Some conclusions are obtained from this study:
v" With comparing the previously published in the

literature, the present results agree very well

with the reference solutions, which indicates
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that the methods are suitable and of high

accuracy for free vibration analysis of
cylindrical nanoshell.
In convergence study, as the number of

polynominal terms, N, is increased, the value of
the frequency parameter, ),,, converges rapidly
and also the convergence mode number is m =
2 and n=2 and this means that two
longitudinal mode and in according to Eq. (45),
five peripheral modes, and totally fifteen
number of mode shapes can represent the
response of system with sufficient degrees.

In the 15t and 2™ modes, at the vicinity of the
critical flow velocity 6.894, natural frequency
equal to zero, where divergence instability
occurs due to pitchfork bifurcation while at this
critical flow velocity, the 34, 4t apnd 5t
modes still remain stable.

As the flow velocity reaches about 7.23
natural frequencies in the 15 mode return to
positive and the system tends to regains stability
in the first mode, while, the 2?4 mode still
remain instable. The same behavior can also be
observed for other vibration modes.

For all following results, zero natural frequency
of PBMNS becomes wunstable and this
physically implies that the PBMNS losses its
stability due to the divergence via a pitchfork
bifurcation.

Natural frequencies and critical fluid velocity
increase with increasing of L/R, h, /R, K,, I?p
and I7p and the critical fluid velocity corresponds
to the lower value sooner than the rest values of
this ratio are reached to be zero. This is perhaps
because increasing Winkler and Pasternak
coefficients increases the shell stiffness.

with the increasing of damper coefficient and
h,/R ratio the natural frequency Q and the
critical fluid velocity iy decrease.

the frequency and the critical velocity have
minimum and maximum values when the
system respectively has with and without
damping coefficient. In this results indicate that
the system tends to be very sensitive to whether
or not there is a damping coefficient in all cases.
the most important parameters on natural
frequencies and fluid velocity is surface density
(pn1, Pps) that with regardless of this
parameter, the critical fluid velocity sooner than
the rest parameters are reached to be zero but in
this case system has maximum natural
frequency due to higher stiffness of nanoshell in
this case.

Volume 14, 2019



WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS

v" when all surface effect is considered, the critical
fluid velocity later than the rest parameters are

reached to be zero.
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Appendix A
The stresses and moment resultants:
hy
(N Voo Neg) = | 01y
—-hy

hn+hy
+f Oijp Az + g5, + 0y,
hy

= (Nxn, Non, Nxgn)

+(pr' ng, Nxep)

1
+ (Uxx' T66. (040 + Uex))
S1

1
+ (Gxx: 099, E (Uxe + UBx))

S2
hy
(Myx, Mgg, M) =f oijn 2dz

_hN

hN+h—p
+f Oijp zdz + oy, (hN + hp) — a5, hy
hy

= (MxN: Mgy, MxeN) + (Mxp: MGp: Mxep)

1
+ (Uxxr 060, (040 + Uex)> (hy + hy)

S2

1
- (Uxx. Uee»i(axe + 09x)> hy

S1
_ 0 0
Nyx = A116xx + A12899 + B11Kxx

1 ow\?
+BIZK99 — E (Tgl + ng) (a) + (Tgl

+ng — Nyp)
L (0%w 1 0%w\ . 9w
i g TRz 507 ) VG
Ngg = Ap169, + Azzfge + By Kxx
1 o 2w 1 ow .,
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E-ISSN: 2224-3429

(A.1)
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(A3)

(A4)
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op 0%w
]11 atz'

0
Nyg = AeeVxp + BesKxo)

_ 0 0
Myy = B11&xx + B12€gg + D11Kxx

52 1 ow,,
+D13Kgg + 752 (1 _E(E) )(hy + hy)
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—Ty (1 _E(a> )hN - Mxp + Ell(ﬁ
1 9%w 0?2

_ 0 0
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Myo = BesYyo + Deskxo,

in which

Aij = AijN +Aijp +At],
Bij - BijN + Bijp + BL*]'
Dij = DijN + Dijp + Dl*]’
Fi1 = Fiin + Fi1p,J11 = Jiv + Ji1p)
Efy = E{in + E{1p> G11 = G{1n + Gi1p,
and

(Aijn, Bijn, Dijn)

hy
=f CijN(LZ»ZZ) dz, (Aijp'Bijp'Dijp)

_h_N

hN+hp
= f Cijp(l,Z,ZZ) dZ,
hn

hN+hp _
(pr'NHp) = fh (33117' e32p)Ezp dz
N
+(e3s1p: e§2p)Ezp:
hN+hp _
(MXP’MBP) = -L (e31p'e32p)Ezp zdz
N

+(e§1p, e?fzp)Ezp(hN + hp),

Al = Ay = (A% + 2u51) + (A%2 + 2u%2),

Ay = Ay = (70 + A51) + (72 + 4%2),
T 732

Age = (U = =) + (w2 — =),

Bj; = B3, = (252 + 2u2)(hy + hy,)

— (A% + 2p51) (hy),

Bi, = B3y = (142 + 2%2)(hy + h)

—(tgt + 251) (hy),
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(A.5)

(A.6)
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366 = (u*2 - _)(hzv + hy) — (U

—%)(hN).

Dy = D3, = (A%2 + 2p%2) (hy + hy)
+(A% + 2p°1) (hy)?,

D}, = D3y = (52 + 2%2) (hy + hy, )’
+(tt + Asl)(h )2

Dee = (u% — _)(hN + hp) + (u™

2

-5y,

* —
F11N_

L ()
ff;N a UNUN)\ (To +To )Z) az

2hy +h
Fl*lp =
S2 Sl
T —
th‘I-hp ( ( d
Z,
Ay Up) 0 +To
ZhN + h
Jiin =
(p°r — p*2)
th U 2 dz
@ —vn) | _ Az |
2hy + hy,
]flp =
(p*r — p*2)
hN+hp v 2
f aooy| ot oz |9
ny  (A—wy)| Pt tp)z
2hy + hy,
Efin =
(z5* —75")z
th Uy 2
ny (1 — (To +15')2”
2hy + h,
El*lp =
(5° —73")z
—[-hN+hp Up 2
hy (1 - Up) (TO + TO )Z
2hy + h,
Giin =
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(p°t — p2)z
2

hn Uy
f_hN (L—vy | _ % +p%2)z?
2hy + hyy

dz,
GIlp =
(p°t — p2)z
hN+hp U 2 d
fN (1-v,) —vp) (p*1 + p%2)z2 | %%

h
T 2hy +hy,

Note that, because of geometric symmetry, the

expressions Bjjy is zero, 1.e. (BUN = 0).

Appendix B
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mg
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2 2
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