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Abstract: - In this paper, the natural frequency, critical fluid velocity and stability analysis of piezoelectric 
biomedical nanosensor (PBMNS) based on cylindrical nanoshell conveying viscous fluid is investigated using 
the electro-elastic Gurtin–Murdoch surface/interface theory. This system subjected to nonlinear electrostatic 
field and viscoelastic medium including visco-pasternak and damping coefficients. Hamilton’s principle and 
the assumed mode method combined with Euler – Lagrange is used for the governing equations and boundary 
conditions. It is shown that fluid velocity due to motion of biomarkers has major unpredictable effects on 
natural frequency and critical fluid velocity of the system and one should precisely consider their effects.  
Key-Words: - Piezoelectric biomedical nanosensor, Natural frequency, Instability, Critical fluid velocity, 
Nanoshell, Gurtin–Murdoch surface/interface theory, Electrostatic force, Visco-Pasternak medium. 
 

1 Introduction 
Nanotechnology is a multidisciplinary branch of 
science which encompasses numerous diverse fields 
of science and technology, pharmaceutical, 
agricultural, environmental, advanced materials, 
chemical science, physics, electronics, information 
technology, and specially biomedical fields such as 
imaging agents, drug delivery vehicle, diagnostic 
tools, etc. to save human life along with other areas 
by application of engineering skills in surgical 
diagnosis, monitoring, treatment, and therapy etc. In 
recent years, the application of nanotechnology 
shows further advancement in several specific areas 
in biomedical such as drug targeting, bio-
diagnostics, bioimaging, and genetic manipulation 
[1]. For example, in head and neck cancer (tumors) 
and breast cancer cells, image-guided laser ablation 
and photothermal therapy with laser light and 
plasmon naturals are the promising minimally 
invasive techniques currently being investigated as 
an alternative to conventional surgical interventions. 
For increase the conformality of therapy delivery, 
the use of tumortargeted nanoparticles, especially 
metallic nanoshell, which are preferentially targeted 
to the tumor and, thereby enhance the safety and 
efficacy of the overall procedure, are proposed [2-
5]. For detection of a wide range of biomarkers such 
as cancer biomarkers many of materials such as 
carbon nanotubes, magnetic nanoparticles, gold 
nanoparticles and nanowires and other materials 
have been presented and developed [6]. Recently 
Gold nanoshells (AuNSs) and nanotube-based 
composite sensors have been intensively 
investigated and applied for medical application [7-

11]. Also, a nanosensor is proposed for detection of 
cancer cells located in a particular region of a blood 
vessel [12] and for detection of cancer biomarkers in 
serum at ultralow concentrations [13]. Recently, a 
research project will lead to development of a new 
category of nanometer-sized chemical and 
biological sensors that are compatible with the 
intracellular environment and will enable new 
hypotheses to be tested in the role of metabolic 
coupling in pancreatic alpha cells and a range of 
other cellular systems involved in the regulation of 
normal human health [14]. With the development of 
material science, the piezoelectric nanosensor and 
nano actuator play an important role for medicine 
applications and have been fabricated as nano-
beams, nano-plates, nano-membranes and nano-
shells [15-17]. One of the most important scientific 
concepts in the design and fabrication of this 
nanosensor, and due to the high sensitivity that can 
be found in medical applications, is the analysis of 
dynamic and vibrations considering of nano-
mechanical theories. Because of the large ratio of 
surface area to volume in nano-scaled structure, the 
behaviour of surfaces and interfaces lead to a 
significant factor in controlling the vibration 
analysis of piezoelectric Nano biomedical sensor 
based on nano-shell. In this case some non-classical 
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continuum theories such as the electro-elastic 
Gurtin–Murdoch surface elasticity theory have been 
introduced to develop the size-dependent continuum 
models [18-19]. In the past two decades, 
investigating the surface effects on the mechanical 
behavior of nanostructures has become one of the 
attractive research areas in nanomechanics, as 
evidenced by the large number of publications on 
this issue [20-25]. Recently, Zhu and Fang et al. 
studied free and forced vibration analysis of nano-
sized single and double shell structures with 
piezoelectric layer based on GM surface/interface 
theory [20-21]. Ghorbanpour Arani et al. studied on 
vibration analysis of double walled visco-carbon 
nanotubes under magnetic fields [22]. In another 
research by Ghorbanpour Arani et al., nonlinear 
vibration of nano sheet with small scale and surface 
effects are investigated by using of nonlocal and 
surface piezoelasticity theories [23]. Also, vibration 
analysis of viscoelastic DWCNT unified with ZnO 
layers and subjected to magnetic and electric fields 
are studied by Fereidoon et al. [24]. Surface stress 
effect on the vibration of nanoscale pipes based on a 
size-dependent Timoshenko beam model is 
investigated by Ansari et al. [25].  Ye et al. 
presented a unified solution method for the free 
vibration analysis of composite shallow shells with 
general elastic boundary conditions [26]. Fazollari 
developed an analytical formulation for free 
vibration analysis of doubly curved laminated 
composite shallow shells by combining the dynamic 
stiffness method and a higher order shear 
deformation theory [27]. Mirza and Alizadeh 
investigated the effects of detached base length on 
the natural frequencies and modal shapes of 
cylindrical shells [28]. Loy et al. presented the free 
vibration analysis of cylindrical shells using an 
improved version of the differential quadrature 
method [29]. An analytical procedure to study the 
free vibration characteristics of thin circular 
cylindrical shells was presented by Naeem and 
Sharma, in which Ritz polynomial functions are 
used for solution of the problem [30]. Zeighampour 
et al. investigated wave propagation in viscoelastic 
single walled carbon nanotubes by accounting for 
the simultaneous effects of the nonlocal constant 
and the material length scale parameter and visco-
Pasternak foundations [31].  
In the present study, the natural frequency, critical 
fluid velocity and stability analysis of piezoelectric 
biomedical nanosensor (PBMNS) based on 
cylindrical nanoshell conveying viscous fluid is 
investigated using the electro-elastic Gurtin–
Murdoch surface/interface theory and considering 
von-karman-Donnell's shell model. This system 

subjected to nonlinear electrostatic field, 
viscoelastic medium including visco-pasternak and 
damping coefficients. Hamilton’s principle and also 
the assumed mode method combined with Euler – 
Lagrange is used for the governing equations, 
boundary conditions and for changing the partial 
differential equations into ordinary differential 
equations. Also stability analysis and dimensionless 
natural frequency (Ω) versus fluid velocity ( ) 
dimensionless of a piezoelectric biomedical 
nanosensor are accurately studied with respect to the 
different geometrical and material parameters.  
 
 

2 Mathematical formulation 
A piezoelectric biomedical nanosensor shown in 
Figure 1 based on cylindrical nanoshell embedded 
with a visco-Pasternak medium and electrostatic 
force with incoming bloodstream as viscous fluid.  

Fig. 1. Piezoelectric biomedical nanosensor 
(PBMNS) conveying viscous bloodstream
 
The length of nano shell is 	, the geometrical 
parameters of the cylindrical shell are mid-surface 
radius , thickness of cylindrical shell 2  
thickness of piezoelectric material layer . With 
the origin of coordinate system located on the 
middle surface of nano-shell, the coordinates of a 
typical point in the axial, circumferential and radius 
directions are described by , , and , respectively. 
Also,	  ,  and  are

 
stiffness coefficient of 

Winkler foundation, shear layer of Pasternak 
foundation and the damping factor of the visco 
medium for the transverse motion, respectively. 
Young modulus, Poisson ratio and the mass density 
of cylindrical nano-shell represent ,  and , 
respectively. In the present nano-shell, it is assumed 
that the mention material properties vary through 
the thickness of nano-shell according to the power-
law function. They are written as 

)1(  
2
2

 

(2)  
2
2
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(3) 
2
2

where  is the power-law exponent. The subscripts 
 and  represent the properties of the nano-shell at 

the upper and lower layers, respectively. 
Young modulus, Poisson ratio, piezoelectric and 
dielectric constants and the mass density of 
piezoelectric layer are , , , ,  and 

. Due to the nano-sized property, the ratio of 
surface to the volume becomes large, and the 
surface energy around the shell expresses significant 
effect on the vibration of nano-structure. According 
to the electro-elastic surface/interface theory, the 
surface/interface region adhered to the neigh boring 
solids is several atomic sizes, and has its own 
electromechanical properties. The surface at the 
outer piezoelectric layer is denoted by , and the 
inner surface is denoted by , as shown in Fig. 1. 
The material properties of surface  are Lamé’s 
constants , , residual stress  and 
piezoelectric constants , . Those of the 

inner surface are Lamé’s constants , ,   and 
residual stress 

. 
Due to the character of nano-shell, the state of 
generalized plane stress of shells is assumed, and 
the normal stress in the radial direction is zero. In 
the cylindrical nano-shell, the constitutive relation 
can be expressed as [32, 33]; 

)4( 

0
0

0 0
,						 

							 ,  
In the outside piezoelectric shell, the constitutive 
relation can be expressed as [17] 

)5( 

0
0

0 0
 

0 0
0 0
0 0 0

, 

	or							 ,
In which the subscripts  and  represent the 
cylindrical nano-shell and piezoelectric layers, 
respectively.

  
is the vector of electric field for 

piezoelectric layers.
 

 and are the matrixes 
of elastic constants, and they can be denoted as 

)6(  
1

, 

	
1

,
2 1

 

)7( 

1
,  

1
,	 

2 1
Since the piezoelectric layers are very thin, and 

are assumed to be zero ( 0), and 
only the radial component of electric field 	is 
considered. Consequetly,  can be written as [34] 

)8(  
0
0
⁄

, 

where  is the voltage applied to piezoelectric 
layers. In addition, the voltages at the piezoelectric 
surface 

 
and  are  

and  , respectively. Based on these assumptions 
mentioned above, the radial component of electric 
displacement  can be presented as 

)9(   
 
 

3 Non- classical Shell theory 
Within the framework of classical shell 

theory, the displacement fields of the nano-shell can 
be written as 

)10(  , , ,
,

, 

)11(  , , ,
,

,

)12(  , , , ,
where ,  and  stand for the middle surface 
displacements in the  ,  and  directions, 
respectively. The nonlinear deflection and 
curvatures are defined by von-karman-Donnell's 
theory as [32, 33] 

)13(  

 

1
2

1 1
2

1 1
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1

2

 

in which   ،  and  are the middle surface 
strains, and  ,	  and  are the curvature 
components of the nano-shell. 
Since the dimension of the shell is at nanometer 
scale, the surface effect needs to be considered. On 
based of the Gurtin–Murdoch surface elasticity 
theory, the constitute relations for surfaces can be 
written as [18-20] 

(14)   

2  

, , , , 

, , , ,
  

2 , , 
in which 

 
is the Kronecker delta function. 

Furthermore, the components of stress at the 
surfaces can be expressed as 

(15)  2  

2
, 

2  

1
2

, 

2  

2
, 

2  

1
2  

1
2 , 

	 , 

1 1
2 , 

, 1,2  

Based on the classical continuum models,  is 
neglected due to its small value as compared to 
other normal stress components. But, in the present 

nonclassical continuum model, this assumption does 
not satisfy the surface conditions. Thus, it is 
supposed that  varies linearly through the 
thickness and satisfies the balance conditions on the 
surfaces [35, 36], i.e. 

)16
(  1

2

1

1
 

1
2

1

1

For simplification, the material properties of 
surfaces and interfaces are selected as 

)17(  

, , 
, ,	 

 

By means of Eqs. (15) and (16), zzσ can be 

rewritten as 

)18(  

2

2
1

 

2 2
, 

According to Eq. (18), the normal stresses xxσ  and 

θθσ  
Eqs. (4) and (5) can be rewrite ten as 

)19a(  
,

1
, 

)19b(  
,

1
, 

)19c(  ,

)19d(  
 

,

1
,

)19e(  
 

,

1
,

(19f)  , 

 

4 Governing equations  
In this section, the governing equations of 

motion of the piezoelectric cylindrical nanoshell are 
obtained by applying the assumed mode method. 
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The total strain and kinetic energies considering the 
surface stress effect are expressed as: 

)20( 

1
2

 

1
2

 

1
2

 

1
2

 

1
2

. 

(21) 
1
2  

where  

(22)  
 

2 |  
|  

Which , 	 and  are the mass density of 
nanoshell, piezoelectric layer and surfaces, 
respectively.  
In Eq. (20), the stresses and moment resultants are 
defined in appendix A.  
The work done by the surrounded viscoelastic 
medium including the visco-Pasternak medium and 
viscous damping and the electrostatic force can be 
written as [37-39] 

(23)
 

(24) Υ cos

2

cosh 1

 

For electrostatic force,	 ,  and Υ 8.85
10 , respectively, are electrode 

distance to nanoshell, nanoshell radius and the air 
permittivity [39].  
The equation for the fluid (in this paper, 
bloodstream) motion may be described by the well-
known Navier–Stokes equation as [40] 

(25),
 

where V ≡ , ,  is the flow velocity vector in 
cylindrical coordinate system with components in 
, , and  directions. This vector can be expressed 

as follows 

(26a) cos ,
 

(26b), 

(26c) sin , 

Where  and  is the constant velocity of 

the fluid (blood). Also , , and  are the pressure, 
the effective fluid viscosity, and the mass density of 
the fluid, respectively, and  represents the 
body forces. Furthermore,	   and  are gradient 

and Laplasian operators, respectively and  is 

perfect derivative which can be defined as below: 

(27),
 

Substituting Eqs. (26) and (27) into (25) we obtain 
the pressure of fluid as: 

(28)

2  

.
 

With multiple both side of above equation at the 
cross-sectional area of the internal fluid (  ), radial 
force is expressed as: 

(29)

2
 

.
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Considering the slip boundary condition in the 
analysis for exact investigation of the behaviour of 
the nanoflow, the average velocity correction factor 

 is introduced to establish the relation between 
slip average velocity  and no-slip average 
velocity , i.e.; 

(30)
,
 

where  coefficient can be written as [40]: 

(31)1
1

4
2

1
,
 

where the slip of flow from inner nanotube through 
Knudsen number ( ) is considered and for 
practical purposes, the tangential momentum 
accommodation coefficient 0.7. Other 
parameters are: 

(32)

2
,		 

64

3 1
,
 

Where 4 and 0.4. And also for slip 
boundary condition, the value of parameter   is set 
to be  1. Hence, the external work of the 
fluid can be expressed as: 

(33
) 

 

2

The equations of motion and corresponding 
boundary conditions of the piezoelectric shell can be 
derived from Hamilton’s principle 

)34(  

There are two ways to obtain the equations of 
motion for a mechanical system: Hamilton's 
principle and Euler–Lagrange equation. Hamilton's 
principle is the main procedure to obtain the 
equations of motion and boundary conditions. The 
equations of motion and corresponding boundary 
conditions of the piezoelectric nano shell can be 
derived from Hamilton’s principle and by taking the 
variations of displacements ,  and , and 

integrating by parts, and by equating the coefficients 
of ,  and  to zero, the governing equations 
of motion are derived as: 

)35 (  :
1

, 

)36(  :
1

, 

)37(  

:
2 1

 

1
 

2 1
	

1
 

 

2

 

Υ cos

2 cosh 1
, 

 
and boundary conditions are obtained as follows: 

(38a) 0
1

0, 

(38b)0
1

0, 

(38c) 

0

1

 

1 1

0, 
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(38d)
0					 					

1
0,

 

(38e) 0				 			
1 1

0,
 

But Euler–Lagrange method is an easier way to 
obtain the equations of motion. The resulting 
equations can be solved by the assumed mode 
method. In the assumed modes method, the 
admissible functions must satisfy the geometric 
boundary conditions and there is no need to satisfy 
the natural boundary conditions. Hence, solving the 
equations with this method reduces significantly the 
complexity of the problem. Therefore, in this work, 
the assumed mode method is used to obtain the 
equations of motion using Euler–Lagrange method. 
Following dimensionless parameters are used: 

)39(  

, ̅ , , , , 

̅ , , 

, ̅ , 

̅∗
∗

, , 

∗
∗

, , 

∗
∗

	 , ∗
∗

, 

∗
∗

, ∗
∗

, 

∗
∗

, ∗̅
∗

, 

∗
∗

, ̅ ∗
∗

, 

∗
∗

, ∗
∗

, 

∗
∗

, ∗
∗

, 

∗
∗

, ̅ , , 

,
1
	 , , 

2
, 	, 

2
Ω , Ω

Ω
, 

, , 

̅ ΩL
, ̅ , 

2
, 

	 ̅
2

, ,	 

, ,
Υ
, 

Respectively, dimensionless strain and kinetic 
energies are obtained as follows: 

)40( 

1
2

 

̅ ̅
 

 

̅ ̅
 

̅ ̅
 

̅ ̅
 

 

 

 

̅
 

̅ ̅
 

 

 

 

 

 

̅
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̅
 

 

, 

)41(
1
2

̅

 

where coefficients of 1. .51  are introduced 
in Appendix B. 
Also, dimensionless work done by viscoelastic 
medium, potential due to external electric voltage, 
visco-pasternak effect and harmonic force, 
respectively, obtained as follows: 

(42a) 

 

̅

 

(42b)

 

̅

2 ̅

̅

̅

̅

̅

̅

 

(42c) 

 

cos
	

	 2 	

cosh 1
	 	

 

 
Using electrostatic force in according to Eq. (42c), 
complicate solution of the obtained equation of 
motion. Hence it is necessary to express it to the 
polynomial form. For this purpose, Taylor 
expansion or curve fitting methods can be used. For 
curve fitting method, the nonlinear electrostatic 
force is approximated with polynomial with desired 
order. This is a standard problem in optimization 
theory and can be implemented in different 
mathematical software such as Matlab, Maple and 
Mathematica. For example lsqcurvefit function in 
Matlab which solve nonlinear curve-fitting (data-
fitting) problems in least-squares sense can be used 
here. Hence with expressing the electrostatic force 
as a polynomial form, the dimensionless work done 
by electrostatic force can be express as follows: 

)43(

 

cos
̅

̅ ̅

⋯ ̅

 

which ̅ ̅  are constant. 
 
 

5 Solution procedure 
In this section, first, discretizing equations of 
motion is expressed by applying the assumed mode 
method and then the complexification-averaging 
method is applied for studying of the steady state 
response of the system. 
 
 
5.1 Discretizing equations of motion 

In this section, by applying the assumed 
mode method, the in-plane, transverse and shear 
deformations can be expressed as general 
coordinates and mode shape functions that satisfy 
the geometric boundary conditions, as follows [33]: 

(44)
, ,
, ,
, ,
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, , cos

, , sin

, , sin

, , cos

, , cos

, , sin

 

,

,

,

 

,
, ,

 

where ,  and  are modal functions 
which satisfy the required geometric boundary 
conditions. ,  and  are unknown 
functions of time and are related to dynamical 
response. 
Substituting Eqs. (44) into Eqs. (40)- (43) and 
applying the Lagrange equtions: 

(45)
 

,				 , ̅ ,  

Where . 
Results in the following reduced-order model of the 
system: 

(46)
 

̅  
, 

(47)
̅  
̅  

, 

(48)

 
̅  

̅  
 

 

2
̅ ̅

̅ ̅

,

where ,  and  are mass, damping and 
linear stiffness matrixes. , , and 

	are second-order nonlinear stiffness 
matrixes and  is third-order nonlinear 
stiffness matrix. Also,	 ,  and 	are the 
linear stiffness, second and third order nonlinear 
stiffness matrixes for electrostatic force expansion, 
respectively. Also, ,  and  are applied 
loads by piezoelectric voltage and surface stress. All 

coefficients of mass, stiffness, linear and nonlinear 
term matrixes and applied loads Eqs. (46) - (48) are 
presented in Appendix C. 
Natural frequencies and mode shapes can be 
obtained from solving following eigenvalue 
equation: 

(49)
 

0, 
 
 

6 Results and Discussions 
In this section, first, comparing the present 

numerical results of macroscopic cylindrical shell 
with previously published in the literature is 
presented for arbitrary boundary conditions and 
convergence study of a Piezoelectric biomedical 
nanosensor (PBMNS) based on nano-shell with 
simply supported boundary condition is investigated 
for Gurtin–Murdoch surface/interface theory. Then 
estimation of the natural frequency, critical fluid 
velocity and stability analysis of piezoelectric 
biomedical nanosensor conveying viscous 
bloodstream is investigated using the electro-elastic 
Gurtin–Murdoch surface/interface theory and 
considering von-karman-Donnell's shell model. In 
order to simplify the presentation, CC, SS, CS and 
CF represent clamped edges, simply supported 
edges, clamped-simply supported edges and 
clamped-free edges, respectively and also for 
simplification of surface effect is represented SE. 
The material properties for nonhomogeneous nano-
shell and piezoelectric layer are shown in Table 1-2, 
respectively [42].  

 
Table 1. Properties of stainless steel and nickel [42] 

Stainless steel Nichel 
  

208 0.381 8166 205 0.31 8900 
 

Table 2. Properties of PZT-4 [42] 
⁄ ⁄ 10

95 0.3 5.2 5.2 560 7500
 
The material and geometrical parameters used in all 
following results are shown in Table 3. 

 
Table 3. The material and geometrical parameters 

[20, 37, 43-44] 
 ⁄   ⁄  	 ⁄   ⁄ ⁄

1 10 10 0.02 0.02 4.488 2.774 
 

⁄
⁄  ⁄ ⁄ ⁄

0.6 3.17 1 1 10 4.488 2.774 0.6 
⁄ ⁄ ⁄ 	 . ⁄ 	 ⁄ ⁄
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3 10 3 10 5.61 1 1
10  

8.99950
10  

2.07127

  	 ⁄   . ⁄
3	 1 2 1 3 10 1060 

 
Of course, the geometrical parameters can be 
varying according to the type of problem. In this 
paper, the results are presented in dimensionless 
form and thus the results are not limited to a 
particular type of matter. The data presented in the 
form of sample data to approximate the numbers 
used in the actual range. 
 
 
6.1 Convergence and comparison studies 
The method proposed in this paper is validated by 
comparing the present numerical results with 
previously published in the literature. If we neglect 
the piezoelectric, visco-Pasternak and surface 
effects, the present model can be reduced to the 
macroscopic cylindrical shell model. The 

dimensionless natural frequencies 

Ω 1 ⁄  of present work are compared 

with macroscopic cylindrical shell which previously 
given by Loy et al. [29] that is shown in Table 4 for 
the three classical boundary conditions. The 
parameters used in this example are: 1, ⁄
20, 	 ⁄ 0.01, and 0.3. It can be observed 
from Table 5 that the present results agree very well 
with the reference solutions, which indicates that the 
method presented in this paper is suitable and of 
high accuracy for free vibration analysis of 
cylindrical shells with classical boundary 
conditions. The slight differences in the results may 
be attributed to the different shell theories and 
solution approaches adopted in the literature and in 
this paper. 
 

Table 4. Comparison of dimensionless natural 

frequencies Ω 1 ⁄  for SS, SC 

and CC boundary conditions for a homogeneous 
cylindrical shells with 1, ⁄ 20, 	 ⁄

0.01, and υ 0.3. 
 SS CS CC 

 Presen
t 

Loy 
[29] 

Presen
t 

Loy 
[29] 

Presen
t 

Loy 
[29] 

1 0.016
101 

0.016
101 

0.023
299 

0.023
974 

0.032
074 

0.032
885 

2 0.009
235 

0.009
382 

0.010
963 

0.011
225 

0.013
202 

0.013
932 

3 0.021
753 

0.022
105 

0.020
953 

0.022
310 

0.019
713 

0.022
672 

4 0.039
307 

0.042
095 

0.041
300 

0.042
139 

0.041
386 

0.042
208 

 
Complete convergence for the dimensionless natural 
frequencies Ω  and dimensionless damping 
frequencies Ω  of SS piezoelectric biomedical 
nanosensor considering with the Gurtin–Murdoch 
surface/interface theory and the material and 
geometrical parameters of Tables (1-3) is shown in 
Tables 5 and 6, respectively.  
 

Table 5. Convergence of dimensionless natural 
frequencies Ω  of the SS piezo piezoelectric elastic 

biomedical nanosensor 
1 2 3 5

2 0.8107340
4357 

0.8107351
0782 

0.8107351
0781 

0.8107351
6796 

3 1.8151243
0896 

1.8151572
0073 

1.8151571
8273 

1.8151580
8628 

4 2.8327282
9570 

2.8328471
2539 

2.8328467
7062 

2.8328504
1730 

 
Table 6. Convergence of dimensionless damp 

frequencies Ω  of the SS piezoelectric biomedical 
nanosensor 

1 2 3 5
2 0.8062114

8043 
0.8062124
2314 

0.8062124
2313 

0.8062124
7871 

3 1.8029349
1873 

1.8029658
5533 

1.8029658
4049 

1.8029666
9801 

4 2.8103357
1036 

2.8104503
3736 

2.8104500
1216 

2.8104535
3764 

 
It is observed that the number of polynomial 
terms,	 , is increased, the value of the frequency 
parameter (Ω ,Ω ), converges rapidly. With 
considering of the two succesasing values of , it is 
shows that as  increases, the percentage difference 
between the successive frequency approximations 
decreases. Thus the error as shown above is less 1 
per cent, which is well within the limits of 
engineering tolerance. The minimum frequency in 
this case is associated with the circumferential wave 
number 2. This assertion is valid for the entire 
range of shell. 
 
 
6.2 Parametric study 
The convergence and comparison study of the 
present work was verified in the previous 
subsection. In this subsection, dimensionless 
frequencies Ω versus dimensionless fluid 
(bloodstream) velocity  for stability analysis and 
estimation of critical fluid velocity of a SS 
piezoelectric biomedical nanosensor (PBMNS) are 
presented in Figures 2-10 with respect to the 
different geometrical and material parameters such 
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as the ratio of the length of the nanosystem to the 
radius ⁄ , the ratio of nanoshell thickness to 
radius ⁄ , the ratio of the piezoelectric thickness 
to the radius ⁄ , the effects of the viscoelastic 
medium (	 , 	 , 	 ̅ ), the piezoelectric voltage  
and also surface energy effects. As shown in these 
figures, the frequency is decreased as the flow 
velocity is increased. 
Figure 2 demonstrate in the dimensionless 
frequency (Ω) versus fluid velocity ( ) for the first 
five vibration modes of the PBMNS. It can be seen 
that Ω  reduces with increased . For zero natural 
frequency, PBMNS becomes unstable and the 
corresponding fluid velocity is called the critical 
flow velocity. As can be seen, the critical fluid 
velocity correspond to the 1  and 2  modes is 
reached at the vicinity of ≅ 6.894 . This 
physically implies that the DWBNNT losses its 
stability due to the divergence via a pitchfork 
bifurcation while the 3 ,  4  and 5  modes are 
still stable. Thereafter, for the fluid velocity within 
the range 6.894 7.23, the first amd second 
modes are zero, which the system becomes unstable. 
As the flow velocity reaches about ≅ 7.23 , 
natural frequencies in the 1  mode return to 
positive and the system tends to regains stability in 
the first mode, while, the 2   mode still remain 
instable. Also, the PBMNS becomes unstable at 3  
mode when ≅ 7.248. This phenomenon may be 
observed in different modes for higher velocities in 
this figure. The same behavior can also be observed 
for other vibration modes of following figures. 

Fig. 2. Dimensionless frequencies Ω versus fluid 
velocity  for the first five vibration modes of SS 

piezoelectric biomedical nanosensor 
 
The effect of length-to-small radius ratio ( ⁄ ) on 
dimensionless natural Ω  versus dimensionless fluid 

velocity  for SS piezoelectric biomedical 
nanosensor is illustrated in Figure 3. It is evident 
that natural frequencies and critical fluid velocity of 
the PBMNS increase with increasing ⁄ . As can 
be seen, the critical fluid velocity corresponds to the 
lower value of ⁄ 5 sooner than the rest values 
of this ratio are reached to be zero. This physically 
implies that first the PBMNS in ⁄ 5 losses its 
stability due to the divergence via a pitchfork 
bifurcation. In addition, the length-to-small radius 
ratio of cylindrical shell has an important effect on 
natural frequency. The reason is that a higher ⁄  
ratio leads to increase in the nanoshell stiffness, and 
cause to higher natural frequencies of nanoshells. 

 
Fig. 3. The dimensionless frequencies Ω versus fluid 

velocity  of SS piezoelectric biomedical 
nanosensor for different values of ⁄  ratio  

 
Figure 4 illustrates the effect of thickness shell to 
small radius ratio ⁄  on dimensionless natural 
frequencies Ω  versus dimensionless fluid velocity 

 for SS piezoelectric biomedical nanosensor.  

Fig. 4. The dimensionless frequencies Ω versus fluid 
velocity  of SS piezoelectric biomedical 

nanosensor for different values of ⁄   ratio  
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It can be seen that with the increasing of the 
nanoshell stiffness ratio ( ⁄ ), the natural 
frequency Ω and the critical fluid velocity  
decrease. Also, the critical fluid velocity 
corresponds to the higher value of ⁄ 0.05 
sooner than the rest values of this ratio are reached 
to be zero. This physically implies that first the 
PBMNS in ⁄ 0.05 losses its stability due to 
the divergence via a pitchfork bifurcation. 
The effect of piezoelectric thickness to small radius 
ratio ( ⁄ ) on dimensionless natural frequencies 
Ω  versus dimensionless fluid velocity  is 
presented in Figure 5. It can be seen that unlike 
previous results for ⁄  ratio, in this case with the 
increasing of the piezoelectric thickness to small 
radius ratio, the natural frequency Ω and the critical 
fluid velocity  increase. Also, the critical fluid 
velocity corresponds to the lower value of ⁄
0.005 sooner than the rest values of this ratio are 
reached to be zero. This physically implies that first 
the PBMNS in ⁄ 0.005 losses its stability 
due to the divergence via a pitchfork bifurcation. 

  
Fig. 5. The dimensionless frequencies Ω versus fluid 

velocity  of SS piezoelectric biomedical 
nanosensor for different values of ⁄   ratio 

 
Figures 6 and 7 respectively illustrate dimensionless 
stiffness coefficient of Winkler foundation 	  and 
shear layer of Pasternak foundation 	  on 
dimensionless natural frequencies Ω  versus 
dimensionless fluid velocity  for SS piezoelectric 
biomedical nanosensor. In both case, it can be seen 
that with the increasing of 	  and 	  ratios, the 
natural frequency Ω and the critical fluid velocity  
increase.  

Fig. 6. The dimensionless frequencies Ω versus fluid 
velocity  of SS piezoelectric biomedical 

nanosensor for different values of  
 

This is perhaps because increasing Winkler and 
Pasternak coefficients increases the shell stiffness. 
For zero natural frequency, PBMNS becomes 
unstable and this physically implies that the 
PBMNS losses its stability due to the divergence via 
a pitchfork bifurcation. 

 

Fig. 7. The dimensionless frequencies Ω versus fluid 
velocity  of SS piezoelectric biomedical 

nanosensor for different values of  
 
Figure 8 presents the effect of dimensionless 
damping coefficient 	 ̅  on dimensionless damp 
frequencies Ω  versus dimensionless fluid velocity 

 for SS piezoelectric biomedical nanosensor. It 
can be seen that with the increasing of damper 
coefficient, the natural frequency Ω and the critical 
fluid velocity  decrease. Also, the critical fluid 
velocity corresponds to the higher value of 	 ̅  
sooner than the rest values of this ratio are reached 
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to be zero and system losses its stability due to the 
divergence via a pitchfork bifurcation. 

Fig. 8. The dimensionless frequencies Ω versus fluid 
velocity  of SS piezoelectric biomedical 

nanosensor for different values of 	 ̅  
 
Figure 9 presents the effect of several of 
surrounding medium on dimensionless natural 
frequencies Ω  with respect to the dimensionless 
fluid velocity . As can be seen, without medium, 
Winkler (	 ), Pasternak (	 ), visco (	 ̅ ), visco-
Winkler (	 	 ̅ ), visco- Pasternak (	 	 ̅ ), 
Winkler-Pasternak (	 	 ) and Visco-medium 
(	 	 	 ̅ ), are eight assumptions medium in 
this work. It can be founded, that the frequency and 
the critical velocity have minimum and maximum 
values when the system respectively has with and 
without damping coefficient. In this results indicate 
that the system tends to be very sensitive to whether 
or not there is a damping coefficient in all cases. 
Also, it is worth mentioning that critical velocity in 
Pasternak foundation is more than critical velocity 
predicted by Winkler foundation. This is due to the 
fact that the Winkler foundation describes the effect 
of the normal stress of the elastic medium, whereas 
Pasternak elastic foundation describes the effect of 
the tangential and normal stresses of the elastic 
medium.  

Fig. 9. The dimensionless frequencies Ω versus fluid 
velocity  of SS piezoelectric biomedical 

nanosensor for different cases of Visco-medium 
 
The effect of piezoelectric voltage  on 
dimensionless natural frequencies Ω  versus 
dimensionless fluid velocity  for SS piezoelectric 
biomedical nanosensor is illustrated in Figure 10.  

Fig. 10. The dimensionless frequencies Ω versus 
fluid velocity  of SS piezoelectric biomedical 

nanosensor for different values of  
 
As shown in this Figure, with the increasing of , 
the natural frequency Ω and the critical fluid 
velocity  increase. This is perhaps because 
increasing piezoelectric voltage increases the 
nanoshell stiffness. For zero natural frequency, 
PBMNS becomes unstable and this physically 
implies that the PBMNS losses its stability due to 
the divergence via a pitchfork bifurcation. 
And in end, dimensionless natural frequencies Ω  
versus dimensionless fluid velocity  for SS 
piezoelectric biomedical nanosensor with and 
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without surface energy effects are shown in Figures 
11. As show in results, the most important 
parameters on natural frequencies and fluid velocity 
is surface density ( , 	) that with regardless of 
this parameter, the critical fluid velocity sooner than 
the rest parameters are reached to be zero and 
system losses its stability due to the divergence via a 
pitchfork bifurcation but in this case system has 
maximum natural frequency due to higher stiffness 
of nanoshell in this case. Also when all surface 
effect is considered, the critical fluid velocity later 
than the rest parameters are reached to be zero. 

  
Fig. 11. Surface energy effects on the dimensionless 

frequencies Ω versus fluid velocity  of SS 
piezoelectric biomedical nanosensor 

 
 

7 Conclusion 
In current study, the natural frequency, 

critical fluid velocity and stability analysis of 
piezoelectric biomedical nanosensor (PBMNS) 
based on cylindrical nanoshell conveying viscous 
fluid is investigated using the electro-elastic Gurtin–
Murdoch surface/interface theory, Hamilton’s 
principle and also the assumed mode method 
combined with Euler – Lagrange. This system 
subjected to nonlinear electrostatic field, 
viscoelastic medium including visco-pasternak and 
damping coefficients. The convergence, accuracy 
and reliability of the current formulation are 
validated by comparisons with existing results. Also 
stability analysis and dimensionless natural 
frequency versus dimensionless fluid velocity of a 
piezoelectric biomedical nanosensor are accurately 
studied with respect to the different geometrical and 
material parameters. 
Some conclusions are obtained from this study: 
 With comparing the previously published in the 

literature, the present results agree very well 
with the reference solutions, which indicates 

that the methods are suitable and of high 
accuracy for free vibration analysis of 
cylindrical nanoshell. 

 In convergence study, as the number of 
polynominal terms,	 , is increased, the value of 
the frequency parameter, Ω , converges rapidly 
and also the convergence mode number is 
2 and 2 and this means that two 
longitudinal mode and in according to Eq. (45), 
five peripheral modes, and totally fifteen 
number of mode shapes can represent the 
response of system with sufficient degrees. 

 In the 1  and 2  modes, at the vicinity of the 
critical flow velocity 6.894, natural frequency 
equal to zero, where divergence instability 
occurs due to pitchfork bifurcation while at this 
critical flow velocity, the 3 , 4  and 5   
modes still remain stable.  

 As the flow velocity reaches about 7.23 , 
natural frequencies in the 1  mode return to 
positive and the system tends to regains stability 
in the first mode, while, the 2   mode still 
remain instable.  The same behavior can also be 
observed for other vibration modes. 

 For all following results, zero natural frequency 
of PBMNS becomes unstable and this 
physically implies that the PBMNS losses its 
stability due to the divergence via a pitchfork 
bifurcation. 

 Natural frequencies and critical fluid velocity 
increase with increasing of ⁄ , ⁄ , 	 , 	  
and  and the critical fluid velocity corresponds 
to the lower value sooner than the rest values of 
this ratio are reached to be zero. This is perhaps 
because increasing Winkler and Pasternak 
coefficients increases the shell stiffness. 

 with the increasing of damper coefficient and 
⁄  ratio the natural frequency Ω and the 

critical fluid velocity  decrease.  
 the frequency and the critical velocity have 

minimum and maximum values when the 
system respectively has with and without 
damping coefficient. In this results indicate that 
the system tends to be very sensitive to whether 
or not there is a damping coefficient in all cases.  

 the most important parameters on natural 
frequencies and fluid velocity is surface density 
( , 	) that with regardless of this 
parameter, the critical fluid velocity sooner than 
the rest parameters are reached to be zero but in 
this case system has maximum natural 
frequency due to higher stiffness of nanoshell in 
this case.  
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 when all surface effect is considered, the critical 
fluid velocity later than the rest parameters are 
reached to be zero. 

 
 
Conflict of interest 
The authors report no conflict of interest. 
 
 
 
Funding Acknowledgement 
‘This research received no specific grant from any 
funding agency in the public, commercial, or not-
for-profit sectors’. 
 
 
Appendix A 
The stresses and moment resultants: 
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Note that, because of geometric symmetry, the 
expressions  is zero, i.e. 0 . 
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